Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bite force and occlusal stress production in hominin evolution

Identifieur interne : 007756 ( Istex/Curation ); précédent : 007755; suivant : 007757

Bite force and occlusal stress production in hominin evolution

Auteurs : Carolyn M. Eng [États-Unis] ; Daniel E. Lieberman ; Katherine D. Zink ; Michael A. Peters

Source :

RBID : ISTEX:F115EE4F057932E081CE8C047A62C7BF0E01A0AC

Descripteurs français

English descriptors

Abstract

Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species‐specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape‐like bite force capabilities. Am J Phys Anthropol 151:544–557, 2013. © 2013 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/ajpa.22296

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:F115EE4F057932E081CE8C047A62C7BF0E01A0AC

Curation

No country items

Daniel E. Lieberman
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
Katherine D. Zink
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
Michael A. Peters
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bite force and occlusal stress production in hominin evolution</title>
<author>
<name sortKey="Eng, Carolyn M" sort="Eng, Carolyn M" uniqKey="Eng C" first="Carolyn M." last="Eng">Carolyn M. Eng</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: cmeng@fas.harvard.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Lieberman, Daniel E" sort="Lieberman, Daniel E" uniqKey="Lieberman D" first="Daniel E." last="Lieberman">Daniel E. Lieberman</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zink, Katherine D" sort="Zink, Katherine D" uniqKey="Zink K" first="Katherine D." last="Zink">Katherine D. Zink</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peters, Michael A" sort="Peters, Michael A" uniqKey="Peters M" first="Michael A." last="Peters">Michael A. Peters</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F115EE4F057932E081CE8C047A62C7BF0E01A0AC</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/ajpa.22296</idno>
<idno type="url">https://api.istex.fr/document/F115EE4F057932E081CE8C047A62C7BF0E01A0AC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">007756</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">007756</idno>
<idno type="wicri:Area/Istex/Curation">007756</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Bite force and occlusal stress production in hominin evolution</title>
<author>
<name sortKey="Eng, Carolyn M" sort="Eng, Carolyn M" uniqKey="Eng C" first="Carolyn M." last="Eng">Carolyn M. Eng</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: cmeng@fas.harvard.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Lieberman, Daniel E" sort="Lieberman, Daniel E" uniqKey="Lieberman D" first="Daniel E." last="Lieberman">Daniel E. Lieberman</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zink, Katherine D" sort="Zink, Katherine D" uniqKey="Zink K" first="Katherine D." last="Zink">Katherine D. Zink</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peters, Michael A" sort="Peters, Michael A" uniqKey="Peters M" first="Michael A." last="Peters">Michael A. Peters</name>
<affiliation>
<mods:affiliation>Department of Human Evolutionary Biology, Harvard University, MA, 02138, Cambridge</mods:affiliation>
<wicri:noCountry code="subField">Cambridge</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">American Journal of Physical Anthropology</title>
<title level="j" type="alt">AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY</title>
<idno type="ISSN">0002-9483</idno>
<idno type="eISSN">1096-8644</idno>
<imprint>
<biblScope unit="vol">151</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="544">544</biblScope>
<biblScope unit="page" to="557">557</biblScope>
<biblScope unit="page-count">14</biblScope>
<date type="published" when="2013-08">2013-08</date>
</imprint>
<idno type="ISSN">0002-9483</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0002-9483</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adductor</term>
<term>Adductor muscle</term>
<term>Adductor muscle force</term>
<term>Adductor muscles</term>
<term>Africanus</term>
<term>American journal</term>
<term>Anthropoid</term>
<term>Anthropol</term>
<term>Australopith</term>
<term>Australopithecus</term>
<term>Australopiths</term>
<term>Average pcsa</term>
<term>Bers</term>
<term>Body mass</term>
<term>Boisei</term>
<term>Chimp</term>
<term>Chimp temporalis</term>
<term>Craniofacial</term>
<term>Cranium</term>
<term>Creel</term>
<term>Csas</term>
<term>Demes</term>
<term>Digital calipers</term>
<term>Early homo</term>
<term>Erectus</term>
<term>Evol</term>
<term>Extant apes</term>
<term>Extant primates</term>
<term>Extant species</term>
<term>Fascicularis</term>
<term>Female pleistocene</term>
<term>Food processing</term>
<term>Force capabilities</term>
<term>Force estimates</term>
<term>Force production</term>
<term>Force scales isometrically</term>
<term>Force values</term>
<term>Fossil</term>
<term>Fossil hominins</term>
<term>Fossil homo</term>
<term>Genus</term>
<term>Genus homo</term>
<term>Genus homo fall</term>
<term>Gorilla</term>
<term>Habilis</term>
<term>Harvard university</term>
<term>Heidelbergensis</term>
<term>Hominin</term>
<term>Hominins</term>
<term>Hominins table</term>
<term>Homo</term>
<term>Homo species</term>
<term>Human masseter</term>
<term>Hylander</term>
<term>Individual molar area measure</term>
<term>Information table</term>
<term>Lever arms</term>
<term>Lieberman</term>
<term>Lucas</term>
<term>Macaca fascicularis</term>
<term>Macaque</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Masseter</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Masticatory muscles</term>
<term>Medial</term>
<term>Medial pterygoid</term>
<term>Medial pterygoid muscles</term>
<term>Modern humans</term>
<term>Molar</term>
<term>Molar area</term>
<term>Molar occlusal area</term>
<term>Muscle architecture</term>
<term>Muscle architecture data</term>
<term>Muscle csas</term>
<term>Muscle force</term>
<term>Muscle forces</term>
<term>Muscle mass</term>
<term>Muscle pcsa</term>
<term>Muscle size</term>
<term>Neanderthalensis</term>
<term>Nonhuman</term>
<term>Nonhuman apes</term>
<term>Nonhuman primate</term>
<term>Nonhuman primates</term>
<term>Nonthermal food processing</term>
<term>Occlusal</term>
<term>Occlusal area</term>
<term>Occlusal stresses</term>
<term>Orangutan</term>
<term>Other primates</term>
<term>Paniscus</term>
<term>Pcsa</term>
<term>Pcsa values</term>
<term>Pcsas</term>
<term>Peabody museum</term>
<term>Pennation</term>
<term>Pennation angle</term>
<term>Personal communications</term>
<term>Phys</term>
<term>Phys anthropol hylander</term>
<term>Physical anthropology</term>
<term>Pleistocene</term>
<term>Primate</term>
<term>Primates</term>
<term>Proc natl acad</term>
<term>Pterygoid</term>
<term>Pygmaeus</term>
<term>Regression line</term>
<term>Sapiens</term>
<term>Second molar</term>
<term>Skeletally</term>
<term>Skull</term>
<term>Standard deviations</term>
<term>Taxon</term>
<term>Temporalis</term>
<term>Troglodytes</term>
<term>Vinyard</term>
<term>Wroe</term>
<term>Zygomatic arch</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adductor</term>
<term>Adductor muscle</term>
<term>Adductor muscle force</term>
<term>Adductor muscles</term>
<term>Africanus</term>
<term>American journal</term>
<term>Anthropoid</term>
<term>Anthropol</term>
<term>Australopith</term>
<term>Australopithecus</term>
<term>Australopiths</term>
<term>Average pcsa</term>
<term>Bers</term>
<term>Body mass</term>
<term>Boisei</term>
<term>Chimp</term>
<term>Chimp temporalis</term>
<term>Craniofacial</term>
<term>Cranium</term>
<term>Creel</term>
<term>Csas</term>
<term>Demes</term>
<term>Digital calipers</term>
<term>Early homo</term>
<term>Erectus</term>
<term>Evol</term>
<term>Extant apes</term>
<term>Extant primates</term>
<term>Extant species</term>
<term>Fascicularis</term>
<term>Female pleistocene</term>
<term>Food processing</term>
<term>Force capabilities</term>
<term>Force estimates</term>
<term>Force production</term>
<term>Force scales isometrically</term>
<term>Force values</term>
<term>Fossil</term>
<term>Fossil hominins</term>
<term>Fossil homo</term>
<term>Genus</term>
<term>Genus homo</term>
<term>Genus homo fall</term>
<term>Gorilla</term>
<term>Habilis</term>
<term>Harvard university</term>
<term>Heidelbergensis</term>
<term>Hominin</term>
<term>Hominins</term>
<term>Hominins table</term>
<term>Homo</term>
<term>Homo species</term>
<term>Human masseter</term>
<term>Hylander</term>
<term>Individual molar area measure</term>
<term>Information table</term>
<term>Lever arms</term>
<term>Lieberman</term>
<term>Lucas</term>
<term>Macaca fascicularis</term>
<term>Macaque</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Masseter</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Masticatory muscles</term>
<term>Medial</term>
<term>Medial pterygoid</term>
<term>Medial pterygoid muscles</term>
<term>Modern humans</term>
<term>Molar</term>
<term>Molar area</term>
<term>Molar occlusal area</term>
<term>Muscle architecture</term>
<term>Muscle architecture data</term>
<term>Muscle csas</term>
<term>Muscle force</term>
<term>Muscle forces</term>
<term>Muscle mass</term>
<term>Muscle pcsa</term>
<term>Muscle size</term>
<term>Neanderthalensis</term>
<term>Nonhuman</term>
<term>Nonhuman apes</term>
<term>Nonhuman primate</term>
<term>Nonhuman primates</term>
<term>Nonthermal food processing</term>
<term>Occlusal</term>
<term>Occlusal area</term>
<term>Occlusal stresses</term>
<term>Orangutan</term>
<term>Other primates</term>
<term>Paniscus</term>
<term>Pcsa</term>
<term>Pcsa values</term>
<term>Pcsas</term>
<term>Peabody museum</term>
<term>Pennation</term>
<term>Pennation angle</term>
<term>Personal communications</term>
<term>Phys</term>
<term>Phys anthropol hylander</term>
<term>Physical anthropology</term>
<term>Pleistocene</term>
<term>Primate</term>
<term>Primates</term>
<term>Proc natl acad</term>
<term>Pterygoid</term>
<term>Pygmaeus</term>
<term>Regression line</term>
<term>Sapiens</term>
<term>Second molar</term>
<term>Skeletally</term>
<term>Skull</term>
<term>Standard deviations</term>
<term>Taxon</term>
<term>Temporalis</term>
<term>Troglodytes</term>
<term>Vinyard</term>
<term>Wroe</term>
<term>Zygomatic arch</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Transformation alimentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species‐specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape‐like bite force capabilities. Am J Phys Anthropol 151:544–557, 2013. © 2013 Wiley Periodicals, Inc.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 007756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:F115EE4F057932E081CE8C047A62C7BF0E01A0AC
   |texte=   Bite force and occlusal stress production in hominin evolution
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022